
437

Computer Analysis of Gradually Tapered Waveguide

with Arbitrary Cross Sections
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Abstract—This short paper presents a general computer analysis of

gradually tapered waveguide with arbitrarily shaped cross sectious. The

teehnique combines coupled-mode theory with numerical methods for
solving the uniform waveguide problem. The coupling coefficients are
computed by using eigenvalues and eigeufunctions obtained numerically.
The mode amplitudes are obtained either by numerical solution of a set of

differential equations or from a closed-form solution.
The applicability of this technique is illustrated by the analysis and

measurement of two transitions. It is shown that theoretical prediction of

coupled-mode amplitudes is reliable for gradual tapers where the flare

angle is small. For large flare angles, more rigorous coupled-mode theory
has to be employed. ‘

I. INTRODUCTION

The gradually tapered waveguide with arbitrarily shaped

cross sections is of importance because of its use in various wave-

guide systems. A transducer converting the rectangular TEI o

waveguide mode to the circular TEO ~ mode has, for instancez

immediate use in the trunk waveguide systems which are being

developed in many countries at present [1]. The general problem

of gradually tapered guided structures also occurs at the lower

frequencies (for example, tapered microstrip or sIo1. line) and

higher frequencies (for certain optical coupling between fibres

and thin films).

A general analysis of such taPers, based on coupled-mode

theory and using field and circuit concepts, has been given by

Solymar [2]. The three-dimensional problem is replaced by a

two-dimensional one of uniform waveguide leading to a set of 2N

simultaneous ordinary linear differential equations in 2N un-

knowns, N being the ‘number of modes propagating along the

taper. The coefficients in these equations are associated with the

eigenvalues and eigenfunctions of the uniform waveguide with

cross section equal to that of the taper at any particular point.

The use of this technique has generally been restricted to

problems where’ analytical eigenfunctions are available for the

different cross sections along the taper. This short paper de-

scribes a technique that breaks the aforementioned restriction

and so solves the problem of the general taper with arbitrary

cross sections. This is made possible by taking advantage of

numerical methods for solving the problem of the arbitrary

uniform waveguide [3]. By substituting the computed eigenvalues

and eigenfunctions into Solymar’s equations, the problem of the

arbitrary taper is then solved numerically. This short paper gives

details of work that was briefly reported by the authors’ [4], [5].

Some work with similar objectives, but different techniques and

applications, has been reported by Schindler [6].

II. THEORETICAL ANALYSIS AND NUMERICAL TEC~NIQUE

A. The Coupled-Mode Equations

The generalized telegraphist’s equations were transformed by

Solymar [2] into a set of 2N differential equations. The ampli-
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Fig. 1. Waveguide transition.

tudes of the forw?rd and backward traveling waves, At+ and At-

in the Iossless waveguide taper of Fig. 1 are

dAi+ + _ 1 ‘(in ‘t) Ai- + ~ (SiP+AP+ + Sip-Ap-),
+ j/?iAi –

-&- 2 dz P=l

1 d(ln Kt) At+ + ~~1 ($’ip-ApdAi-
j~iAt- = – - — + + Sip+ Ap–),—.

dz 2 dz

i=1,2, . ..N (1)

where /3,(z) and Ki(z) are the propagation coefficient and the wave

impedance of the ith mode. They are related as follows:

(2)

where the brackets denote a TE mode and the parentheses a TM

mode. The taper itself should be smooth, that is, if the equation

of the taper surface is ~(x,y,z) = O, then both f(x,y,z) and its z

derivative should be continuous along z.

The coupling terms on the right-hand side of (1) can be

identified as due respectively to ch3nge with z of wave impedance

of individual modes, and to the direct geometric effect (the taper

coupling of different modes via the boundary conditions).

Explicit forms have been obtained by Splymar [2] for the for-

ward and backward coupling coefficients Sip+ and Sip- between

the ith and pth modes and will not be repeated here: The coeffi-

cients Sip+ depend on the fields and cutoff frequencies of the

ith and pth modes, and so their computation depends on the

numerical solution of the transverse Helmholtz equation. The

most promising numerical methods are reviewed and discussed

by Davies [3] and Ng [7]. In the course of this work, three

numerical methods were found tisefql, namely, the finite differ-

ence [a]; the finite element [9], tmd the polynomial approxima-

tion method [10]. All three methods are available as program

packages, and solve the Helmho]tz equation by approximating

the scalar field tj by some function over the waveguide cross

section. Different techniques are used to set up and to solve the

standard form of the eigenvalue matrix equation.

B. Sdztion jor the Waveguide Transition.

Having computed SiP* and ~i for relevant modes along the

waveguide, it is possible to calculate the mode amplitudes’ (and

therefore the S matrix of the transducer) by small coupling

theory or by numerical methods, By small coupling theory,

solymar [2] obtains

(3)‘m+(z)=AOexp(-’J:flmdz)
HAm-(Q) = –A. L Smm-

0 -:d=)exp(-’2J:’mdz)dz

(4)
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Fig. 2. Linear taper between two rectangular waveguides carrying the
TEOI mode.

with boundary conditions

Am-(L) = Am+(o) = o. (5)

Note that an erroneous term in Solymar’s expression has been

removed to give (4), although the only effeet is on the phase of

Am-(0).

For the numerical solution of (l), standard routines that solve

simultaneous differential equations include the Runge–Kutta

method and a variety of methods of predictor-corrector type [11].

Since (1) described a two-point boundary value problem, it does

not lend itself directly to any of these methods, and a few

introductory steps must be taken before they can be applied.

This disadvantage is absent in the new technique developed by

Denman [12] who employed a recursive algorithm, along with

the method of invariant imbedding.

It is essential to compute the mode eigenvalue and eigen-

functions at sufficiently close cross sections for the accurate

solution of (1) or of (4). Because of the oscillatory term in the

integrands of (4), it is essential that the spacing between suc-

cessive cross sections be sufficiently small compared with the

guide wavelength (see Section IV). However, since the taper is

gradual, ~i and Sip* were calculated at a reasonable number of

cross seetions and polynomial curve fitting [13], [14] was used

to give them as continuous functions of z.

It is important to note that these solutions at the various cross

seetions are evaluated only once for any geometry. Analysis of

the taper performance at different frequencies requires further

calculation of just the closed form [(4)] or numerical solution of

the differential equation system in z alone [(1)].

III. NUMERICAL APPLICATIONS AND

EXPERIMENTAL VERIFICATION

By utilizing the technique presented in Section II, the solution

of an arbitrary taper is now possible. In order to check the

technique, two practical tapers were examined.

A, The Linearly Tapered Rectangular Waveguide

This type of taper was chosen for two reasons. Firstly, the

transverse eigenvalue problem has an analytical solution. Hence

the coupled-mode theory can be dissociated from the problem of

numerical solution of the transverse eigenfunct!orm- Secondly,

experimental results obtained by Young [15] are available.

The linear taper considered by Young is shown in Fig. 2.

It conneets the standard rectangular waveguide WG-6, operating

in L band (1. 12–1 .70 GHz), to a guide having the same width but

with reduced height. The design parameters of the taper are

bl = 3.25 in, bz = 0.40 in, a = 6.50 in, and L = 19.392 in.

Assuming a pure TEIO mode is incident at z = O, and taking

advantage of the symmetry, single-mode operation is obtained

over the operating frequency band. Furthermore, the wave

impedance is constant; thus the set of (1) reduces to

dAm*
— k j/lmAm+ = Smm-(Z)Am*

dz
(6)
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Fig. 4. Sections of the Mari6 transducer.

and the approximate solution (4) for the reflection of the TEIO

mode becomes

J

Am-(0) = – A. ~ Smm-(z) exp ( –j2/3mz) dz (7)
o

resulting in the following expression for the reflected wave

amplitude:

Am-(0) = – ~AoejU’ {Ci(ul) – Ci(uJ + jSi (uJ – jSi (uz)}

(8)

where Ci (u) and Si (u) are the cosine and sine integrals, and

UI = 2/?bl/tan 0 U2 = 2/?b2/tan 8. (9)

The two simultaneous differential equations (6) were also solved

numerically, using the standard subroutine DLBVP [16] which

combines the method of adjoint equations with a predictor-

corrector technique. The results agree with those of the approx-

imate expression (8) within 5 percent for the voltage reflection

coefficient. The numerical results are shown in Fig. 3 along with

the experimental resuits of Young [15]. There is reasonable

agreement between theory and experiment, remembering that

the reflections caused by the abrupt discontinuity at the ends of

the taper have not been accounted for in the theory.

B. The Marik Mode Transducer

This taper [17 ] converts the rectangular TEIO mode into the

circular TEO ~ mode through three distinct sections which are

illustrated in Fig. 4 together with the associated field patterns

of the main mode.

A detailed theory of the transducer together with an opti-

mized design are given in [18]. A pair of transducers was made

and tested in band 33-50 GHz. The model matches the standard

rectangular waveguide WG 23 (0.224 x 0.112 in) to the circular

waveguide of 13-mm diameter. The transducer length was chosen
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Fig. 5. VSWIR/frequency curves of a Marie transducer.

as 7.75 in (24 guide wavelength at midband) by an optimization

scheme [18 ]” {using the afo~ementioned analysis technique) to

give minimum insertion loss.

Because of the many symmetries of the Mari6 transducer, the

TEIO rectangular mode couples only to TEO ~, TE41, TE02. . .

modes of the circular guide [18]. Computations of the eigtm-

values along the length of the transducer showed that single-

mode operation is obtained over the frequency band 3340 GHz.

The return loss is then a convenient parameter to compare theory

and experiment. Having computed the eigenvalues along the

transducer, to give ~~(z) and Km(z), the backward coupling

coefficient of the main mode ~~~- is calculated. Equation (4)

then gives the complex reflection coefficient.

The measured VSWR is shown in Fig. 5 together with that

calculated using (4). The agreement between theory and experi-

ment can be considered satisfactory, bearing in mind the small

VSWR and the fabrication difficulties; the transducer is 32

wavelengths long at 50 GHz and surface tolerances were i 0.02

mm.

IV. DISCUSSION AND CONCLUSIONS

In the case of the Mari6 transducer, satisfactory agreement

between theory and experiment was obtained. There is perhaps

better agreement for the linear taper (Section III-A) which can

be attributed to its higher mechanical accuracy. Compared with

the direct numerical solution of the set of differential equations

(l), the approximate expression (4) for Am- is clearly easier to

calculate. For the examples treated in this short paper (Sections

III-A and III-B), the solutions of (1) and (4) were in good

agreement for a reflection coefficient less than 0.2.

The technique (of combining numerical methods with Soly-

mar’s theory) has been checked only with single-mode structures.

However, it is believed to be a representative test since the small

coupling to the reflected wave of the main mode is mathematically

no different from the small coupling to forward or backward

traveling waves in a multimode system [2].

It can be concluded that the new technique is a valid and

effective one for the analysis and design of any gradual taper with

arbitrarily shaped cross sections. An advantage of this technique

is the insight it gives to transducer operation and hence leading

to improved design (e.g., identification of modes, trapped modes,

and local reflection coefficient). A worthwhile application was

the design of the Mari& transducer resulting in an insertion loss

averaging only 0.2 dB over the 33–50-GHz band [5].

The present technique seemingly has no serious or fundamental

limitations. The range of validity of the small coupling theory

used in this work can be extended to cover steep tapers. For

instance, Stevenson [19 ] has given exact coupled-mode equations

for a general taper, and his approach could be used to derive

exact equations in At* corresponding to (l).

It would be prohibitively inefficient to develop one computer

program that can deal with all shapes of tapers. However, a

general routine can be easily developed to calculate the S matrix

of any taper if the transverse eigenfunction and eigenvalue at

various z values are input data, These functions should be com-

puted by separate routines chosen for the convenience of the

cross-sectional shapes. Computer time is mainly spent in the

analysis of the cross sections. From experience, it was found

sufficient to analyze one cross section per guide wavelength for

gradual tapers. But again, the computer time varies considerably

according to cross-sectional shape, accuracy demanded, and

numerical method used [3], [7].

It should also be noted that for a given transducer, the afore-

mentioned computer analysis of the cross-sectional modes pro-

vides data used at all frequencies. Once this analysis has been

performed, evaluation of the scattering matrix at various

frequencies requires solution only of the z-dependent problem,

viz. computation of the explicit equation (4) when the taper is

gradual. For the Mari6 transducer of Section III-B, the com-

puting time is about 1 s for each frequency on an IBM 360/65.

The technique presented in this short paper can, in principle,

be applied to dielectric rod, optical, or acoustic waveguide tapers

of arbitrary cross sections.
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Letters

Computation of the Hecken Impedauce Function

J. H. CLOETE

The Dolph-Chebyshev impedance function derived by

Klopfenstein [1] has discontinuities at the taper ends which

introduce unwanted effects in certain applications. The Heeken

impedance function [2] is not optimum in the Dolph–Chebyshev

sense, but achieves matching without impedance steps. For any

bandwidth and maximum magnitude of reflection coefficient in

the passband, the Hecken taper is only slightly longer than the

opt imum taper [2]. ~ecken’s near-optimum taper is therefore an

attractive alternative to the optimum taper when impedance

disconiinuities are undesirable.

The equation for the near-optimum impedance function

contains a transcendental function G(B,&) which is tabulated in

Hecken’s paper. The function is given by

JBe—
G(B,<) = — 10{B41 – ~’} d<’

sinh B ~

where 10(Z) is the modified Bessel function of the first kind and

zero order.

Instead of using the tables, G(B,~) may be computed re-

cursively as

G(B,<) = ~B ,~oakbk

where

ao=l a~ =

be=< bk=

The derivation is based on

[3] and is not given here,

w
@ ‘k-t
C(l - Cz)’ + 2kbk_ ,

2k+l “

the method described by Grossberg
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Synthesis of Certain Transmission Lines Employed in

Microwave Integrated Circuits

RAYMOND CRAMPAGNE AND GRATIA KHOO

With a quasi-TEM approximation, the characteristic parame-

ters of numerous structures used as hyperfrequency micro-

electronics transmission lines can be calculated with the aid

of conformal mapping. Simple theoretical formulas are rarely

used since they bring into play the function K(k)/K’(k) where

K(k) is the complete elliptic integral of the first type, K’(k) its

complementary function, and k its argument.

Some geometrical configurations which can be treated are

shown in Fig. 1(a)–(c). This method is particularly interesting

since expressions of k (argument of elliptic integral) as a func-

tion of geometric dimensions are often simple.

The infinite dielectric thickness hypothesis made in certain

cases is, in general, justified by the spacing between conductors.

Although this method is surprisingly simple accompanied by a

large application domain, it has been put aside by many research

workers. Instead, sophisticated numerical methods like those of

finite differences and finite elements [1] have been preferred.

These methods are applicable for the analysis of transmission

lines but not for the synthesis, Moreover, they do not lead to
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