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Abstract—This short paper presents a general computer analysis of
gradually tapered waveguide with arbitrarily shaped cross sections. The
technique combines coupled-mode theory with numerical methods for
solving the uniform waveguide problem. The coupling coefficients are
compnted by using eigenvalues and eigenfunctions obtained numerically.
The mode amplitudes are obtained either by numerical solution of a set of
differential equations or from a closed-form solution.

The applicability of this technique is illustrated by the analysis and
measurement of two transitions. It is shown that theoretical prediction of
coupled-mode amplitudes is reliable for gradual tapers where the flare
angle is small. For large flare angles, more rigorous coupled-mode theory
has to be employed.

I. INTRODUCTION

The gradually tapered waveguide with arbitrarily shaped
cross sections is of importance because of its use in various wave-
guide systems. A transducer converting the rectangular TE;,
waveguide mode to the circular TE,,; mode has, for instance,
immediate use in the trunk waveguide systems which are being
developed in many countries at present [1}. The general problem
of gradually tapered guided structures also occurs at the lower
frequencies (for example, tapered microstrip or slot line) and
higher frequencies (for certain optical coupling between fibres
and thin films).

A general analysis of such tapers, based on coupled-mode
theory and using field and circuit concepts, has been given by
Solymar [2]. The three-dimensional problem is replaced by a
two-dimensional one of uniform waveguide leading to a set of 2N
simultaneous ordinary linear differential equations in 2N un-
knowns, N being the number of modes propagating along the
taper. The coefficients in these equations are associated with the
eigenvalues and eigenfunctions of the uniform waveguide with
cross section equal to that of the taper at any particular point.

The use of this technique has generally been restricted to
problems where analytical eigenfunctions are available for the
different cross sections along the taper. This short paper de-
scribes a technique that breaks the aforementioned restriction
and so solves the problem of the general taper with arbitrary
cross sections. This is made possible by taking advantage of
numerical methods for solving the problem of the arbitrary
uniform waveguide [3]. By substituting the computed eigenvalues
and eigenfunctions into Solymar’s equations, the problem of the
arbitrary taper is then solved numerically. This short paper gives
details of work that was briefly reported by the authors [4], [5].
Some work with similar objectives, but different techniques and
applications, has been reported by Schindler [6].

II. THEORETICAL ANALYSIS AND NUMERICAL TECHNIQUE
A. The Coupled-Mode Equations

The generalized telegraphist’s equations were transformed by
Solymar [2] into a set of 2NV differential equations. The ampli-
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tudes of the forward and backward traveling waves, A;T and 4;~

in the lossless waveguide taper of Fig. 1 are

dA* 1d(In K;) .
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where B,(z) and K(z) are the propagation coefficient and the wave
impedance of the /th mode. They are related as follows:

= 27 K(i) = &i—) @

where the brackets denote a TE mode and the parentheses a TM
mode. The taper itself should be smooth, that is, if the equation
of the taper surface is f(x,y,z) = 0, then both f(x,y,z) and its z
derivative should be continuous along z. -

The coupling terms on the right-hand side of (1) can be
identified as due respectively to change with z of wave impedance
of individual }nodes, and to the direct geometric effect (the taper
coupling of different modes via the boundary conditions).
Explicit forms have been obtained by Solymar [2] for the for-
ward and backward coupling coefficients S;, and S, between
the ith and pth modes and will not be repeated here. The coeffi-
cients S;,* depend on the fields and cutoff frequencies of the
ith and pth modes, and so their computation depends on the
numerical solution of the transverse Helmholtz equation. The
most promising numerical methods are reviewed and discussed
by Davies [3] and Ng [7]. In the course of this work, three
numerical methods were found useful, namely, the finite differ-
ence [8], the finite element [9], and the polynomial approxima-
tion method [10]. All three methods are available as program
packages, and solve the Helmholtz equation by approximating
the scalar field by some function over the waveguide cross
section. Different techniques are used to set up and to solve the
standard form of the eigenvalue matrix equation.

B. Solution for the Waveguide Transition.

Having computed S;,* and B, for relevant modes along the
waveguide, it is possible to calculate the mode amplitudes'(and
therefore the S matrix of the transducer) by small coupling
theory or by numerical methods By small coupling theory,
Solymar [2] obtains

A, (2) = Ao exp (—j r Bon dZ) 3)
A [v]
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[
@



438

a4 By
I ° —
_‘]: WG -6 | | n 1
! ' o |
T %
| A | i
z=0 z=L Cross-section at A
Fig. 2. Linear taper between two rectangular waveguides carrying the

Eoy mode.

with boundary conditions
Ay~ (L) = 4,7(0) = 0. &)

Note that an erroneous term in Solymar’s expression has been
removed to give (4), although the only effect is on the phase of
A~ (0).

For the numerical solution of (1), standard routines that solve
simultaneous differential equations include the Runge-Kutta
method and a variety of methods of predictor-corrector type [11].
Since (1) described a two-point boundary value problem, it does
not lend itself directly to any of these methods, and a few
introductory steps must be taken before they can be applied.
This disadvantage is absent in the new technique developed by
Denman [12] who employed a recursive algorithm, along with
the method of invariant imbedding.

It is essential to compute the mode eigenvalue and eigen-
functions at sufficiently close cross sections for the accurate
solution of (1) or of (4). Because of the oscillatory term in the
integrands of (4), it is essential that the spacing between suc-
cessive cross sections be sufficiently small compared with the
guide wavelength (see Section IV). However, since the taper is
gradual, B; and S;,* were calculated at a reasonable number of
cross sections and polynomial curve fitting [13], [14] was used
to give them as continuous functions of z.

Tt is important to note that these solutions at the various cross
sections are evaluated only once for any geometry. Analysis of
the taper performance at different frequencies requires further
calculation of just the closed form [(4)] or numerical solution of
the differential equation system in z alone [(1)].

III. NUMERICAL APPLICATIONS AND
EXPERIMENTAL VERIFICATION

By utilizing the technique presented in Section I, the solution
of an arbitrary taper is now possible. In order to check the
technique, two practical tapers were examined.

A, The Linearly Tapered Rectangular Waveguide

This type of taper was chosen for two reasons. Firstly, the
transverse eigenvalue problem has an analytical solution. Hence
the coupled-mode theory can be dissociated from the problem of
numerical solution of the transverse eigenfunctions. Secondly,
experimental results obtained by Young [15] are available.

The linear taper considered by Young is shown in Fig. 2.
It connects the standard rectangular waveguide WG-6, operating
in L band (1.12-1,70 GHz), to a guide having the same width but
with reduced height. The design parameters of the taper are
b, = 3.25in, b, = 0.40in, @ = 6.50 in, and L = 19.392 in.

Assuming a pure TE,, mode is incident at z = 0, and taking
advantage of the symmetry, single-mode operation is obtained
over the operating frequency band. Furthermore, the wave
impedance is constant; thus the set of (1) reduces to

dA,*

— % .”?mAmi = Smm_(Z)Ami (6)
dz
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and the approximate solution (4) for the reflection of the TE,

mode becomes
L

An~(0) = — 4o J

[}

Smm— (Z) eXp ( —jZﬂmZ) dz (7)

resulting in the following expression for the reflected wave
amplitude:

Ay~ (0) = —3Aoe™ {Ci(uy) — Ci(uy) + jSi(uy) — jSiup)}
®
where Ci(#) and Si(u) are the cosine and sine integrals, and
uy = 2Bbjtan 6 u, = 2fb,/tan . (9)

The two simultaneous differential equations (6) were also solved
numerically, using the standard subroutine DLBVP [16] which
combines the method of adjoint equations with a predictor—
corrector technique. The results agree with those of the approx-
imate expression (8) within 5 percent for the voltage reflection
coefficient. The numerical results are shown in Fig. 3 along with
the experimental results of Young [15]. There is reasonable
agreement between theory and experiment, remembering that
the reflections caused by the abrupt discontinuity at the erids of
the taper have not been accounted for in the theory.

B. The Marié Mode Transducer

This taper [17] converts the rectangular TE,, mode into the
circular TEy; mode through three distinct sections which are
illustrated in Fig. 4 together with the associated field patterns
of the main mode.

A detailed theory of the transducer together with an opti-
mized design are given in [18]. A pair of transducers was made
and tested in band 33-50 GHz. The model matches the standard
rectangular waveguide WG 23 (0.224 x 0.112 in) to the circular
waveguide of 13-mm diameter. The transducer length was chosen
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Fig. 5. VSWR/frequency curves of a Marié transducer.

as 7.75 in (2% guide wavelength at midband) by an optimization
scheme [18] (using the aforementioned analysis technique) to
give minimum insertion loss.

Because of the many symmetries of the Marié transducer, the
TE,, rectangular mode couples only to TEy;, TE,{, TEg,- -
modes of the circular guide [18]. Computations of the eigen-
values along the length of the transducer showed that single-
mode operation is obtained over the frequency band 33-40 GHz.
The return loss is then a convenient parameter to compare theory
and experiment. Having computed the eigenvalues along the
transducer, to give B,(z) and K,(z), the backward coupling
coefficient of the main mode S,,,~ is calculated. Equation (4)
then gives the complex reflection coefficient.

The measured VSWR is shown in Fig. 5 together with that
calculated using (4). The agreement between theory and experi-
ment can be considered satisfactory, bearing in mind the small
VSWR and the fabrication difficulties; the transducer is 32
wavelengths long at 50 GHz and surface tolerances were +0.02
mm.

1V. DiscussioN AND CONCLUSIONS

In the case of the Marié transducer, satisfactory agreement
between theory and experiment was obtained. There is perhaps
better agreement for the linear taper (Section III-A) which can
be attributed to its higher mechanical accuracy. Compared with
the direct numerical solution of the set of differential equations
(1), the approximate expression (4) for 4, is clearly easier to
calculate. For the examples treated in this short paper (Sections
II-A and III-B), the solutions of (1) and (4) were in good
agreement for a reflection coefficient less than 0.2.

The technique (of combining numerical methods with Soly-
mar’s theory) has been checked only with single-mode structures.
However, it is believed to be a representative test since the small
coupling to the reflected wave of the main mode is mathematically
no different from the small coupling to forward or backward
traveling waves in a multimode system [2].

It can be concluded that the new technique is a valid and
effective one for the analysis and design of any gradual taper with
arbitrarily shaped cross sections. An advantage of this technique

is the insight it gives to transducer operation and hence leading
to improved design (e.g., identification of modes, trapped modes,
and local reflection coefficient). A worthwhile application was
the design of the Marié transducer resulting in an insertion loss
averaging only 0.2 dB over the 33-50-GHz band [5].

The present technique seemingly has no serious or fundamental
limitations. The range of validity of the small coupling theory
used in this work can be extended to cover steep tapers. For
instance, Stevenson {19] has given exact coupled-mode equations
for a general taper, and his approach could be used to derive
exact equations in 4;* corresponding to (1).

It would be prohibitively inefficient to develop one computer
program that can deal with all shapes of tapers. However, a
general routine can be easily developed to calculate the .S matrix
of any taper if the transverse eigenfunction and eigenvalue at
various z values are input data. These functions should be com-
puted by separate routines chosen for the convenience of the
cross-sectional shapes. Computer time is mainly spent in the
analysis of the cross sections. From experience, it was found
sufficient to analyze one cross section per guide wavelength for
gradual tapers. But again, the computer time varies considerably
according to cross-sectional shape, accuracy demanded, and
numerical method used [3], [7].

1t should also be noted that for a given transducer, the afore-
mentioned computer analysis of the cross-sectional modes pro-
vides data used at all frequencies. Once this analysis has been
performed, evaluation of the scattering matrix at various
frequencies requires solution only of the z-dependent problem,
viz. computation of the explicit equation (4) when the taper is
gradual. For the Marié transducer of Section III-B, the com-
puting time is about 1 s for each frequency on an IBM 360/65.

The technique presented in this short paper can, in principle,
be applied to dielectric rod, optical, or acoustic waveguide tapers
of arbitrary cross sections.
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Computation of the Hecken Impedance Function
J. H. CLOETE

The Dolph-Chebyshev impedance function derived by
Klopfenstein [1] has discontinuities at the taper ends which
introduce unwanted effects in certain applications. The Hecken
impedance function {2] is not optimum in the Dolph-Chebyshev
sense, but achieves matching without impedance steps. For any
bandwidth and maximum magnitude of reflection coefficient in
the passband, the Hecken taper is only slightly longer than the
optimufn taper [2]. Hecken’s near-optimum taper is therefore an
attractive alternative to the optimum taper when impedance
discontinuities are undesirable.

The equation for the near-optimum impedance function
corntains a transcendental function G(B,&) which is tabulated in
Hecken’s paper. The function is given by

¢ —
GO = ~2— | LBV = ¢ a
sinh B J,
where Iy(z) is the modified Bessel function of the first kind and
zero order.
Instead of using the tables, G(B,£) may be computed re-
cursively as

. B ®
G(B,&) = ab
(B:0) sinh B ¥='o s
where
BZ
A = 4G = e -1
¢ — & + 2kby_,
by = b, = .
0=¢ b 2k + 1

The derivation is based on the method described by Grossberg
[3] and is not given here.
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Synthesis of Certain Transmission Lines Employed in
Microwave Integrated Circuits

RAYMOND CRAMPAGNE anp GRATIA KHOO

With a quasi-TEM approximation, the characteristic param-
eters of numerous structures used as hyperfrequency micro-
electronics transmission lines can be calculated with the aid
of conformal mapping. Simple theoretical formulas are rarely
used since they bring into play the function K(k)/K’(k) where
K(k) is the complete elliptic integral of the first type, K'(k) its
complementary function, and & its argument.

Some geometrical configurations which can be treated are
sHown in Fig. 1(a)-(c). This method is particularly interesting
since expressions of k (argument of elliptic integral) as a func-
tion of geometric dimensions are often simple.

The infinite dielectric thickness hypothesis made in certain
cases is, in general, justified by the spacing between conductors.
Although this method is surprisingly simple accompanied by a
large application domain, it has been put aside by many research
workers. Instead, sophisticated numerical methods like those of
finite differences and finite elements [1] have been preferred.
These methods are applicable for the analysis of transmission
lines but not for the synthesis. Moreover, they do not lead to

Manuscript received April 27, 1976; revised September 10, 1976.
The authors are with the Microwave Laboratory, National Polytechnic
Institute of Toulouse, Toulouse, France.



